A Polymeric Micellar Carrier for the Solubilization of Biphenyl Dimethyl Dicarboxylate

A polymeric micelle drug delivery system was developed to enhance the solubility of poorly-water soluble drug, biphenyl dimethyl dicarboxylate, DDB. The block copolymers consisting of poly(D,L-lactide) (PLA) as the hydrophobic segment and methoxy poly(ethylene glycol) (mPEG) as the hydrophilic segme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of pharmacal research 2003, Vol.26 (2), p.173-181
Hauptverfasser: Chi, Sang-Cheol, Yeom, Dae-Il, Kim, Sung-Chul, Park, Eun-Seok
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A polymeric micelle drug delivery system was developed to enhance the solubility of poorly-water soluble drug, biphenyl dimethyl dicarboxylate, DDB. The block copolymers consisting of poly(D,L-lactide) (PLA) as the hydrophobic segment and methoxy poly(ethylene glycol) (mPEG) as the hydrophilic segment were synthesized and characterized by NMR, DSC and MALDI-TOF mass spectroscopy. The size of the polymeric micelles measured by dynamic light scattering showed a narrow monodisperse size distribution with the average diameter less than 50 nm. The MW of mPEG-PLA, 3000 (MW of mPEG, 2 K; MW of PLA, 1K), and the presence of hydrophilic and hydrophobic segments on the polymeric micelles were confirmed by MALDI-TOF mass spectroscopy and NMR, respectively. Polymeric micelle solutions of DDB were prepared by three different methods, i.e. the matrix method, emulsion method and dialysis method. In the matrix method, DDB solubility was reached to 13.29 mg/mL. The mPEG-PLA 2K-1K micelle system was compared with the poloxamer 407 micelle system for their critical micelle concentration, micelle size, solubilizing capacity, stability in dilution and physical state. DDB loaded-polymeric micelles prepared by the matrix method showed a significantly increased aqueous solubility (>5000 fold over intrinsic solubility) and were found to be superior to the poloxamer 407 micelles as a drug carrier.
ISSN:0253-6269
1976-3786