만성통증을 억제하는 전침효과의 말초성 기전과 아편양물질수용기에 관한 연구

Objective : The central opioid mechanism of acupuncture analgesia has been fairly well documented in acute behavioral experiments, but little electrophysiological study has been performed on the peripheral mechanism and subtypes of opioid receptors responsible for acupuncture-induced antinociception...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:大韓韓醫學會誌 2003, Vol.24 (3), p.108-117
Hauptverfasser: 신홍기(Hong-Kee Shin), 이서은(Seo-Eun Lee), 박동석(Dong-Suk Park)
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective : The central opioid mechanism of acupuncture analgesia has been fairly well documented in acute behavioral experiments, but little electrophysiological study has been performed on the peripheral mechanism and subtypes of opioid receptors responsible for acupuncture-induced antinociception in chronic animal models. In the present electrophysiological experiment, we studied the peripheral mechanism and opioid receptor subtypes which Were implicated in electroacupuncture-induced antinociception in the rat with chronic inflammatory and neurogenic pain. Methods : In the rat with complete Freund's adjuvant-induced inflammation and spinal nerve injury, dorsal horn cell responses to afferent C fiber stimulation were recorded before and after electroacupuncture (EA) stimulation applied to the contralateral Zusanli point for 30 minutes. Also studied Were the effects of specific opioid receptor antagonists and naloxone methiodide, which can not cross the blood-brain barrier, on EA-induced inhibitory action. Results : EA-induced inhibitory action was significantly attenuated by naloxone methiodide, suggesting that EA-induced inhibition was mediated through peripheral mechanism. Pretreatment, but not posttreatment of naltrexone and spinal application significantly blocked EA-induced inhibitory actions. In inflammatory and neurogenic pain models, ${\mu}-$ and ${\delta}-opioid$ receptor antagonists (${\beta}-funaltrexamine$ & naltrindole) significantly reduced EA-induced inhibitory action, but ${\kappa}-opioid$ receptor antagonist had weak inhibitory effect on EA-induced antinociception. Conclusion : These results suggest that 2Hz EA-stimulation induced antinoeiceptive action is mediated through peripheral as well as central mechanism, and mainly through ${\mu}-$ and ${\delta}-opioid$ receptors.
ISSN:1010-0695
2288-3339