초상자성 나노 입자의 자기이완 특성에 관한 이론적 연구
Purpose : To develop a theoretical model for magnetic relaxation behavior of the superparamagnetic nano-particle agent, which demonstrates multi-functionality such as liver- and lymp node-specificity. Based on the developed model, the computer simulation was performed to clarify the relationship bet...
Gespeichert in:
Veröffentlicht in: | Taehan Chagi Kongmyŏng Ŭikwa Hakhoe chi 2003, Vol.7 (1), p.39-46 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose : To develop a theoretical model for magnetic relaxation behavior of the superparamagnetic nano-particle agent, which demonstrates multi-functionality such as liver- and lymp node-specificity. Based on the developed model, the computer simulation was performed to clarify the relationship between relaxation time and the applied magnetic field strength. Materials and Methods : The ultrasmall superparamagnetic iron oxide (USPIO) was encapsulated with biocompatiable polymer, to develop a relaxation model based on outsphere mechanism, which was resulting from diffusion and/or electron spin fluctuation. In addition, Brillouin function was introduced to describe the full magnetization by considering the fact that the low-field approximation, which was adapted in paramagnetic case, is no longer valid. The developed model describes therefore the T1 and T2 relaxation behavior of superparamagnetic iron oxide both in low-field and in high-field. Based on our model, the computer simulation was performed to test the relaxation behavior of superparamagnetic contrast agent over various magnetic fields using MathCad (MathCad, U.S.A.), a symbolic computation software. Results : For T1 and T2 magnetic relaxation characteristics of ultrasmall superparamagnetic iron oxide, the theoretical model showed that at low field ( |
---|---|
ISSN: | 1226-9751 2288-3800 |