Molecular Analysis of Salmonella Enterotoxin Gene Expression
Salmonella encodes an enterotoxin (Stn) which possesses biological activity similar to the cholera toxin. Stn contributes significantly to the overall virulence of S. typhimurium in a murine model. The production of Stn is enhanced in a high-osmolarity medium and by contact with epithelial cells. In...
Gespeichert in:
Veröffentlicht in: | Journal of microbiology and biotechnology 2003-08, Vol.13 (4), p.598-606 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Salmonella encodes an enterotoxin (Stn) which possesses biological activity similar to the cholera toxin. Stn contributes significantly to the overall virulence of S. typhimurium in a murine model. The production of Stn is enhanced in a high-osmolarity medium and by contact with epithelial cells. In the present study, the in vitro and in vivo transcriptional regulations of the sin promoter revealed two promoters, P1 and P2. The P1 promoter identified by a primer extension analysis of stn mRNA exhibited a switching mechanism in vivo. Depending on the growth stage, transcription was initiated from different start sites termed $P1_S\;and\;P1_E$. $P1_S$, recognized by RNA polymerase containing ${\sigma}^S(E{\sigma}^S),\;and\;P1_E$, recognized by $E{\sigma}^70$, were activated during the stationary and exponential phases, respectively, while $P1_S\;and\;P1_E$ were both negatively regulated by CRPㆍcAMP and H-NS. Results revealed that $P1_S$ was the responsible promoter activated under a high osmolarity and low pH. The P2 promoter was identified 45 nucleotides downstream from $P1_E$ and negatively controlled by CRPㆍcAMP in vitro. No P2 activity was detected in vivo. The regulation of stn expression monitored using a Pstn::egfp fusion indicated that $E{\sigma}^S$ was required for the induction of stn and various factors were involved in stn regulation inside animal cells. |
---|---|
ISSN: | 1017-7825 1738-8872 |