PTCR Characteristics of BaTiO$_3$Thin Films made by rf/dc Magnetron Sputter Technique
BaTiO$_3$cerameic thin films doped with Mn were manufactured by rf/dc magnetron sputter technique. We have investigated crystal structure, surface morphology and PRCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperature. Secon...
Gespeichert in:
Veröffentlicht in: | Transactions on electrical and electronic materials 2000, Vol.1 (2), p.28-31 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BaTiO$_3$cerameic thin films doped with Mn were manufactured by rf/dc magnetron sputter technique. We have investigated crystal structure, surface morphology and PRCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperature. Second heat treatment of the specimen were performed in the temperature range of 400 to 1350$\^{C}$ X-ray diffraction patterns of BaTiO$_3$ thin films show that the specimen heat treated below 600$\^{C}$ is an amorphous phase and the one heat treated above 1100$\^{C}$ forms a poly-crystallization . In this specimen heat-treated at 1300$\^{C}$, a lattice constant ratio(c/a) was 1.188. Scanning electron microscope(SEM) image of BaTiO$_3$ thin films of the specimen heat treated in between 900 and 1100$\^{C}$ shows a grain growth. At 1100$\^{C}$, the specimen stops grain-growing and becomes a poly-crystallization . A resistivity-temperature characteristics of the specimen depends on the doping concentrations of Mn. A resistivity ratio between the value at room temperature and the one above Curie temperature was 10$^4$ for pure BaTiO$_3$ thin films and 10$\^$5/ fo BaTiO$_3$ : additive 0.127mol% MnO |
---|---|
ISSN: | 1229-7607 2092-7592 |