Alteration of 4-Aminopyridine-Sensitive, Voltage-Dependent K - Channel in Arterial Smooth Muscle Cells of One-Kidney, One-Clip Goldblatt Hypertensive Rats
Using the patch-clamp technique, we investigated the alteration of 4-aminopyridine(4-AP)-sensitive, voltage-dependent $K^+$ channel (Kv) in the mesenteric arterial smooth muscle cell (MASMC) of renovascular hypertensive model, one-kidney one-clip Goldblatt hypertensive rat (GBH). To isolate $K_V$ cu...
Gespeichert in:
Veröffentlicht in: | The Korean journal of physiology & pharmacology 2000-01, Vol.4 (5), p.385-391 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the patch-clamp technique, we investigated the alteration of 4-aminopyridine(4-AP)-sensitive, voltage-dependent $K^+$ channel (Kv) in the mesenteric arterial smooth muscle cell (MASMC) of renovascular hypertensive model, one-kidney one-clip Goldblatt hypertensive rat (GBH). To isolate $K_V$ current, internal pipette solution contained 5 mM ATP and 10 mM EGTA. Under these condition, MASMC was depolarized by 4-AP, but charybdotoxin did not affect membrane potential. Membrane potential of hypertensive cell $(-40.3{\pm}3.2\;mV)$ was reduced when compared to that of normotensive cell $(-59.5{\pm}2.8\;mV).$ Outward $K^+$ current of hypertensive cell was significantly reduced when compared to normotensive cell. At 60 mV, the outward currents were $19.10{\pm}1.91$ and $14.06{\pm}1.05$ pA/pF in normotensive cell and hypertensive cell respectively. 4-AP-sensitive $K^+$ current was also smaller in hypertensive cell $(4.28{\pm}0.38\;pA/pF)$ than in normotensive cell $(7.65{\pm}0.52\;pA/pF).$ The values of half activation voltage $(V_{1/2})$ and slope factor (k1) as well as the values of half inactivation voltage $(V_{1/2})$ and slope factor (k1) were virtually similar between GBH and NTR. These results suggest that the decrease of 4-AP-sensitive $K^+$ current contributes to a depolarization of membrane potential, which leads to development of vascular tone in GBH. |
---|---|
ISSN: | 1226-4512 2093-3827 |