대뇌 기저핵 신경세포에서 Nitric Oxide를 매개로 한 망간의 세포독성
Objectives:eurotoxicity is mediated by nitric oxide(NO) in the rat primary neuronal cultures and assess the effect of $Mn^{2+}$ on the N-methyl-D aspartate(NMDA) receptors. Methods: We have used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)assay to examine the effect of cytotoxi...
Gespeichert in:
Veröffentlicht in: | Yebang Ŭihakhoe chi 1999, Vol.32 (4), p.459-466 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives:eurotoxicity is mediated by nitric oxide(NO) in the rat primary neuronal cultures and assess the effect of $Mn^{2+}$ on the N-methyl-D aspartate(NMDA) receptors. Methods: We have used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)assay to examine the effect of cytotoxicity of $MnCl_2$ in neuronal cells , NO production was determined by measuring nirites, a stable oxidation product of NO. The neurons in the rat that contains neuronal nitric oxide synthase(nNOS) were examined by immunofluorescence and confocal microscopy. The effects of $Mn^{2+}$ on the NMDA receptors was assesed by the whole cell voltage clamp technique. Results: We showed that the NO release and NOS expression was increased with 500uM $MnCl_2$ treatment and an NOS inhibitors, $N^G-nitro-L-arginine$, prevented neurotoxicity elicited by manganese. In the electrophysiological study, $Mn^{2+}$ does not block or activate the NMDA receptors and not pass through the NMDA receptors in a neurons of basal ganglia. Conclusions: It is concluded that manganese neurotoxicity in basal ganglia was partially mediated by nitric oxide in the cell culture model. |
---|---|
ISSN: | 0254-5985 |