충전층에서 탄소에 고정시킨 Tyrosinase의 반응속도에 관한 연구

Influence of the axial dispersion on immobilized enzyme catalytic bed was investigated in order to examine the kinetic behavior of the biocatalysis. The enzyme employed in this study was the tyrosinase(EC 1.14.18.1) immobilized on carbon support : this system requires two substrates of phenol and ox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Punsŏk kwahak 1997, Vol.10 (1), p.66-74
Hauptverfasser: 신선경, 김교근, Shin, Sun Kyoung, Kim, Kyeo-Keun
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Influence of the axial dispersion on immobilized enzyme catalytic bed was investigated in order to examine the kinetic behavior of the biocatalysis. The enzyme employed in this study was the tyrosinase(EC 1.14.18.1) immobilized on carbon support : this system requires two substrates of phenol and oxygen. This enzyme has potential application for phenol degradation in waste water. A simulated reactor was a packed-bed reactor of 2.54cm in diameter and 10cm long, loaded with the immobilized carbon particle with an average diameter of $550{\mu}m$. A phenol feed in the strength of 55.5mM(5220ppm) was used to observe the behavior of the immobilized enzyme column at three different dissolved oxygen levels of 0.08445mM(2.7ppm), 0.1689mM(5.4ppm) and 0.3378mM(9.5ppm) with the flow rates in the range of 60(1mL/s) to 180mL/min(3mL/s). Examination of the Biot number and Damkolher numbers of the immobilized system enables us to eliminate the contribution of external mass transfer to set of differential equations derived from the dispersion model. Solution of the equation was finally obtained numerically with the application of the Danckwert boundary conditions and the assumed zero-and first order rates on the non-linear two substrate enzyme kinetics. Higher conversion of phenol was observed at the low flow rates and at the higher oxygen concentration. Comparison of axial dispersion and plug flow model showed that no detectable difference was observed in the column outlet conversion between the axial and the plug flow models which was in complete agreement with the previous studies. 지름 2.54cm, 길이 10cm인 유리관에 tyrosinase(EC. 1.14.18.1)를 입자의 크기 $550{\mu}m$인 탄소에 고정시켜 충진하고, 페놀과 산소를 기질로 사용하여 tyrosinase의 반응 특성을 조사하기 위해 axial dispersion 모델을 제안하였다. 본 논문에서 페놀의 농도는 55.5mM로 고정시키고 산소(2.7ppm, 5.4ppm, 그리고 9.5ppm)와 유속 (1~3mL/s)을 변화시키면서 탄소에 고정된 tyrosinase의 반응을 관찰하였다. 또한, Damkolher수를 계산하고 분산 특성과 식으로부터 효소반응 속도 및 분산의 영향을 예측하기 위해 수치적 해석을 하였다. 연구 결과 물질저항은 주로 외부 전달과 내부확산이었으며, 제안된 모델에서 Biot수는 64.25였다. 페놀은 1.0mL/s 정도의 느린 속도에서 산소의 농도가 높을수록 높은 전환율을 나타내었다. 한편, axial dispersion 모델과 plug flow 모델의 비교에서는 모두 같은 전환율을 나타내어 axial dispersion 모델이 반응속도와 무관함을 알 수 있었다.
ISSN:1225-0163