On the symmetric sierpinski gaskets

Based on a n-regular polygon $P_n$, we show that $r_n = 1/(2 \sum^{[(n-4)/4]+1}_{j=0}{cos 2j\pi/n)}$ is the ratio of contractions $f_i(1 \leq i \leq n)$ at each vertex of $P_n$ yielding a symmetric gasket $G_n$ associated with the just-touching I.F.S. $g_n = {f_i $\mid$ 1 \leq i \leq n}$. Moreover w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 1997, Vol.12 (1), p.157-163
Hauptverfasser: Song, Hyun-Jong, Kang, Byung-Sik
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 1
container_start_page 157
container_title Communications of the Korean Mathematical Society
container_volume 12
creator Song, Hyun-Jong
Kang, Byung-Sik
description Based on a n-regular polygon $P_n$, we show that $r_n = 1/(2 \sum^{[(n-4)/4]+1}_{j=0}{cos 2j\pi/n)}$ is the ratio of contractions $f_i(1 \leq i \leq n)$ at each vertex of $P_n$ yielding a symmetric gasket $G_n$ associated with the just-touching I.F.S. $g_n = {f_i $\mid$ 1 \leq i \leq n}$. Moreover we see that for any odd n, the ratio $r_n$ is still valid for just-touching I.F.S $H_n = {f_i \circ R $\mid$ 1 \leq i \leq n}$ yielding another symmetric gasket $H_n$ where R is the $\pi/n$-rotation with respect to the center of $P_n$.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO199711919488775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO199711919488775</sourcerecordid><originalsourceid>FETCH-LOGICAL-k529-328433b47721a881c6a6945e585028b23af5fbd7aca93628674df6e42dce30123</originalsourceid><addsrcrecordid>eNotzT1rwzAQgGERWqhJ8x8MpaNAdyfppDGEfibgJXuQbTkRTkzIeem_b6Cd3u19FqpCJKvJoH1QFSA6DezpSa1ESmvIIwdnTKVemqmeT7mWn8slz7fS1VLy7VomGUt9TDLmWZ7V45DOklf_Xar9-9t-86l3zcfXZr3To8OoCYMlai0zQgoBOp98tC67O4ShRUqDG9qeU5fi3Q-ebT_4bLHvMhlAWqrXv-1YZC6HqZfz4Xu9bSBGBogQbQjMjn4BiSw6Uw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the symmetric sierpinski gaskets</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Song, Hyun-Jong ; Kang, Byung-Sik</creator><creatorcontrib>Song, Hyun-Jong ; Kang, Byung-Sik</creatorcontrib><description>Based on a n-regular polygon $P_n$, we show that $r_n = 1/(2 \sum^{[(n-4)/4]+1}_{j=0}{cos 2j\pi/n)}$ is the ratio of contractions $f_i(1 \leq i \leq n)$ at each vertex of $P_n$ yielding a symmetric gasket $G_n$ associated with the just-touching I.F.S. $g_n = {f_i $\mid$ 1 \leq i \leq n}$. Moreover we see that for any odd n, the ratio $r_n$ is still valid for just-touching I.F.S $H_n = {f_i \circ R $\mid$ 1 \leq i \leq n}$ yielding another symmetric gasket $H_n$ where R is the $\pi/n$-rotation with respect to the center of $P_n$.</description><identifier>ISSN: 1225-1763</identifier><identifier>EISSN: 2234-3024</identifier><language>kor</language><ispartof>Communications of the Korean Mathematical Society, 1997, Vol.12 (1), p.157-163</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Song, Hyun-Jong</creatorcontrib><creatorcontrib>Kang, Byung-Sik</creatorcontrib><title>On the symmetric sierpinski gaskets</title><title>Communications of the Korean Mathematical Society</title><addtitle>대한수학회논문집</addtitle><description>Based on a n-regular polygon $P_n$, we show that $r_n = 1/(2 \sum^{[(n-4)/4]+1}_{j=0}{cos 2j\pi/n)}$ is the ratio of contractions $f_i(1 \leq i \leq n)$ at each vertex of $P_n$ yielding a symmetric gasket $G_n$ associated with the just-touching I.F.S. $g_n = {f_i $\mid$ 1 \leq i \leq n}$. Moreover we see that for any odd n, the ratio $r_n$ is still valid for just-touching I.F.S $H_n = {f_i \circ R $\mid$ 1 \leq i \leq n}$ yielding another symmetric gasket $H_n$ where R is the $\pi/n$-rotation with respect to the center of $P_n$.</description><issn>1225-1763</issn><issn>2234-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNotzT1rwzAQgGERWqhJ8x8MpaNAdyfppDGEfibgJXuQbTkRTkzIeem_b6Cd3u19FqpCJKvJoH1QFSA6DezpSa1ESmvIIwdnTKVemqmeT7mWn8slz7fS1VLy7VomGUt9TDLmWZ7V45DOklf_Xar9-9t-86l3zcfXZr3To8OoCYMlai0zQgoBOp98tC67O4ShRUqDG9qeU5fi3Q-ebT_4bLHvMhlAWqrXv-1YZC6HqZfz4Xu9bSBGBogQbQjMjn4BiSw6Uw</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Song, Hyun-Jong</creator><creator>Kang, Byung-Sik</creator><scope>JDI</scope></search><sort><creationdate>1997</creationdate><title>On the symmetric sierpinski gaskets</title><author>Song, Hyun-Jong ; Kang, Byung-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k529-328433b47721a881c6a6945e585028b23af5fbd7aca93628674df6e42dce30123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Hyun-Jong</creatorcontrib><creatorcontrib>Kang, Byung-Sik</creatorcontrib><collection>KoreaScience</collection><jtitle>Communications of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Hyun-Jong</au><au>Kang, Byung-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the symmetric sierpinski gaskets</atitle><jtitle>Communications of the Korean Mathematical Society</jtitle><addtitle>대한수학회논문집</addtitle><date>1997</date><risdate>1997</risdate><volume>12</volume><issue>1</issue><spage>157</spage><epage>163</epage><pages>157-163</pages><issn>1225-1763</issn><eissn>2234-3024</eissn><abstract>Based on a n-regular polygon $P_n$, we show that $r_n = 1/(2 \sum^{[(n-4)/4]+1}_{j=0}{cos 2j\pi/n)}$ is the ratio of contractions $f_i(1 \leq i \leq n)$ at each vertex of $P_n$ yielding a symmetric gasket $G_n$ associated with the just-touching I.F.S. $g_n = {f_i $\mid$ 1 \leq i \leq n}$. Moreover we see that for any odd n, the ratio $r_n$ is still valid for just-touching I.F.S $H_n = {f_i \circ R $\mid$ 1 \leq i \leq n}$ yielding another symmetric gasket $H_n$ where R is the $\pi/n$-rotation with respect to the center of $P_n$.</abstract><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1225-1763
ispartof Communications of the Korean Mathematical Society, 1997, Vol.12 (1), p.157-163
issn 1225-1763
2234-3024
language kor
recordid cdi_kisti_ndsl_JAKO199711919488775
source EZB-FREE-00999 freely available EZB journals
title On the symmetric sierpinski gaskets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20symmetric%20sierpinski%20gaskets&rft.jtitle=Communications%20of%20the%20Korean%20Mathematical%20Society&rft.au=Song,%20Hyun-Jong&rft.date=1997&rft.volume=12&rft.issue=1&rft.spage=157&rft.epage=163&rft.pages=157-163&rft.issn=1225-1763&rft.eissn=2234-3024&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO199711919488775%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true