On the symmetric sierpinski gaskets

Based on a n-regular polygon $P_n$, we show that $r_n = 1/(2 \sum^{[(n-4)/4]+1}_{j=0}{cos 2j\pi/n)}$ is the ratio of contractions $f_i(1 \leq i \leq n)$ at each vertex of $P_n$ yielding a symmetric gasket $G_n$ associated with the just-touching I.F.S. $g_n = {f_i $\mid$ 1 \leq i \leq n}$. Moreover w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 1997, Vol.12 (1), p.157-163
Hauptverfasser: Song, Hyun-Jong, Kang, Byung-Sik
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on a n-regular polygon $P_n$, we show that $r_n = 1/(2 \sum^{[(n-4)/4]+1}_{j=0}{cos 2j\pi/n)}$ is the ratio of contractions $f_i(1 \leq i \leq n)$ at each vertex of $P_n$ yielding a symmetric gasket $G_n$ associated with the just-touching I.F.S. $g_n = {f_i $\mid$ 1 \leq i \leq n}$. Moreover we see that for any odd n, the ratio $r_n$ is still valid for just-touching I.F.S $H_n = {f_i \circ R $\mid$ 1 \leq i \leq n}$ yielding another symmetric gasket $H_n$ where R is the $\pi/n$-rotation with respect to the center of $P_n$.
ISSN:1225-1763
2234-3024