EQUIVALENCES OF SUBSHIFTS
Subshifts of finite type can be classified by various equivalence relations. The most important equivalence relation is undoubtedly strong shift equivalence, i.e., conjugacy. In [W], R. F. Williams introduced shift equivalence which is weaker than conjugacy but still sensitive.
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 1996, Vol.33 (3), p.685-692 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Subshifts of finite type can be classified by various equivalence relations. The most important equivalence relation is undoubtedly strong shift equivalence, i.e., conjugacy. In [W], R. F. Williams introduced shift equivalence which is weaker than conjugacy but still sensitive. |
---|---|
ISSN: | 0304-9914 |