EQUIVALENCES OF SUBSHIFTS

Subshifts of finite type can be classified by various equivalence relations. The most important equivalence relation is undoubtedly strong shift equivalence, i.e., conjugacy. In [W], R. F. Williams introduced shift equivalence which is weaker than conjugacy but still sensitive.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 1996, Vol.33 (3), p.685-692
1. Verfasser: Lee, Jung-Seob
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subshifts of finite type can be classified by various equivalence relations. The most important equivalence relation is undoubtedly strong shift equivalence, i.e., conjugacy. In [W], R. F. Williams introduced shift equivalence which is weaker than conjugacy but still sensitive.
ISSN:0304-9914