Homogeneous Catalysis (VI). Hydride Route with Chloro Ligand Dissociation for the Hydrogenation of Acrylonitrile with trans-Chlorocarbonylbis(triphenylphosphine)iridium(I)

The reaction of $IrClH_2(CO)(Ph_3P)_2$ ($Ph_3P$=triphenylphosphine) with acrylonitrile (AN) produces a stoichiometric amount of propionitrile (PN) at $100^{\circ}C$ under nitrogen, which suggests that the catalytic hydrogenation of AN to PN with $IrCl(CO)(Ph_3P)_2$ proceeds through the hydride route...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Korean Chemical Society 1983, Vol.4 (4), p.180-183
Hauptverfasser: Moon, Chi-Jang, Chin, Chong-Shik
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reaction of $IrClH_2(CO)(Ph_3P)_2$ ($Ph_3P$=triphenylphosphine) with acrylonitrile (AN) produces a stoichiometric amount of propionitrile (PN) at $100^{\circ}C$ under nitrogen, which suggests that the catalytic hydrogenation of AN to PN with $IrCl(CO)(Ph_3P)_2$ proceeds through the hydride route where the formation of the dihydrido complex, $IrClH_2(CO)(Ph_3P)_2$ is the initial step. The rate of the hydrogenation of AN to PN with $IrCl(CO)(Ph_3P)_2$ is decreased by the presence of excess $Cl^-$ in the reaction system, which suggests that $Cl^-$ is the dissociating ligand in the catalytic cycle. It has been also found that the rate of the hydrogenation increases with inercase both in hydrogen pressure and in concentration of free $Ph_3P$, and with decrease in AN concentration in the reaction system.
ISSN:0253-2964
1229-5949