Latitude and Altitude Affects the Distribution and Population Features of Osmia spp. in Korea
Reports of a global decline in pollinator populations, especially mason bees, have raised concerns regarding the maintenance of pollination interactions. Although addressing local factors causing bee decline is a potential mitigation strategy at the landscape scale, regional rates and high-latitude...
Gespeichert in:
Veröffentlicht in: | International Journal of Industrial Entomology 2024-03, Vol.48 (1), p.48 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reports of a global decline in pollinator populations, especially mason bees, have raised concerns regarding the maintenance of pollination interactions. Although addressing local factors causing bee decline is a potential mitigation strategy at the landscape scale, regional rates and high-latitude threats to bee diversity are unclear. We investigated the distribution of mason bees (Osmia. spp. (O. pedicornis, O. corniforns, O. taurus, and O. satoi) and measured species richness and species ratios at regional, latitudinal, and altitudinal scales. We examined the association between bee species richness and three putative environmental conditions: high-low, altitude-dependent, and latitude-dependent. The species richness of the O. pedicornis bee was the highest and it was found between latitudes 35° and 37°, and at 500-600 m in both the northern and southern hemispheres, showing an inverse latitudinal gradient of bee species richness in South Korea. Mason bee species richness and global climate are important predictors of flowering plant diversity. Climate change threatens bee and vascular plant diversity; however, the overlap between bee abundance and plant diversity can be improved by employing suitable conservation strategies. |
---|---|
ISSN: | 1598-3579 |