Shelf life of Bottled Sea Squirt Halocynthia roretzi Meat Packed in Vegetable Oil, BSMO

Fresh sea squirt meat requires a modified processing and preservation process because it has a short shelf life due to its high mois- ture content and strong proteolytic enzyme activity. In this study, bottled sea squirt meat prepared in vegetable oil (BSMO) to enhance the consumer acceptability was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fisheries and aquatic sciences 2014-03, Vol.17 (1), p.37
Hauptverfasser: Nam Do Choi, Ji Ting Zeng, Byung Dae Choi, Hong Soo Ryu
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fresh sea squirt meat requires a modified processing and preservation process because it has a short shelf life due to its high mois- ture content and strong proteolytic enzyme activity. In this study, bottled sea squirt meat prepared in vegetable oil (BSMO) to enhance the consumer acceptability was exposed to γ-ray (Co60, 10 kGy/h) irradiation to extend the shelf life without the use of a heating process. Response surface methodology was used to determine the optimal mixing ratio of BSMO containing 5% dehy- drated fresh meat. Texture analysis and nutritional evaluation were also performed on a control and BSMO samples. The volatile basic nitrogen (VBN) content and total cell count were measured to determine the shelf life of irradiated BSMO products during chilled storage at 4°C for 60 days. According to a panel of 10 trained tasters (aged 20-29 years), the optimal mixing formulation was 80 g meat in 60 mL of mixed vegetable oil (30 mL of olive oil and 30 mL of sesame oil). The highest rated formulation, accord- ing to a panel of nine trained tasters (aged ≥30 years), was 80 g meat in 60 mL of mixed vegetable oil (42 mL of olive oil and 18 mL of sesame oil). Moisture, ash, and protein contents in BSMO did not change significantly (P < 0.05) compared with the control. A higher lipid content (0.84 ± 0.23 to 2.13 ± 0.61; P < 0.05) was observed due to the presence of vegetable oil on the surface of BSMO. The vegetable oil raised the hardness, springiness, cohesiveness, gumminess, chewiness, and resilience of BSMO. BSMO products remained edible after 50 days of storage at 4°C based on the VBN content (BSMO 1: 27.92 ± 0.96 mg/100 g, BSMO 2: 24.84 ± 1.95 mg/100 g) and total cell count (BSMO 1: 4.60 ± 0.80 log CFU/mL, BSMO 2: 3.65 ± 0.20 log CFU/mL) when com- pared with standard levels of VBN (25.00 mg/100 g) and total cell count (5 log CFU/mL), respectively. The results showed that irradiated BSMO products could help to expand the processed seafood market and increase the popularity of seafood among the younger generations.
ISSN:2234-1749
2234-1757