HDAC3 Silencing Enhances Acute B Lymphoblastic Leukaemia Cells Sensitivity to MG-132 by Inhibiting the JAK/Signal Transducer and Activator of Transcription 3 Signaling Pathway

Purpose: HDAC3, which is associated with smurf2, has been shown to be associated with poor prognosis in B-ALL. This study examined the efficacy of targeting HDAC3 combined with MG-132 as a possible therapeutic strategy for B-ALL patients. Methods: Real-time PCR and western blot were used to measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemotherapy (Basel) 2020-12, Vol.65 (3-4), p.85-100
Hauptverfasser: Guo, Yongling, Li, Xinyao, He, Zhengchang, Ma, Dan, Zhang, Zhaoyuan, Wang, Weili, Xiong, Jie, Kuang, Xinyi, Wang, Jishi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: HDAC3, which is associated with smurf2, has been shown to be associated with poor prognosis in B-ALL. This study examined the efficacy of targeting HDAC3 combined with MG-132 as a possible therapeutic strategy for B-ALL patients. Methods: Real-time PCR and western blot were used to measure the expression of smurf2 and HDAC3 from B-ALL patients bone marrow samples. Sup-B15 and CCRF-SB cells were treated with MG-132, small interfering RNA of smurf2 or HDAC3. A plasmid designed to up-regulate smurf2 expression was transfected into B-ALL cells. Flow cytometry and western blot were used to measure variation due to these treatments in terms of apoptosis and cell cycle arrest. Results: Expression of Smurf2 and HDAC3 mRNA were inversely related in B-ALL patients. Up-regulation of smurf2 or MG-132 influenced HDAC3, further inhibiting the JAK/signal transducer and activator of transcription 3 (STAT3) signal pathway and inducing apoptosis in B-ALL cells. When we treated Sup-B15 and CCRF-SB cells with siHDAC3 and MG-132 for 24 h, silencing HDAC3 enhanced the apoptosis rate induced by MG-132 in B-ALL cells and further inhibited the JAK/STAT3 pathway. Furthermore, MG-132 was observed to cause G2/M phase arrest in B-ALL cells and inhibited the JAK/STAT3 pathway, leading to apoptosis. Conclusions: Silencing of HDAC3 enhanced the sensitivity of B-ALL cells to MG-132. The combination of targeting HDAC3 and MG-132 may provide a new avenue for clinical treatment of acute B lymphocytic leukaemia and improve the poor survival of leukaemia patients.
ISSN:0009-3157
1421-9794
DOI:10.1159/000500713