Dissemination of Bacterial Fluoroquinolone Resistance in Two Multidrug-Resistant Enterobacteriaceae

Bacterial resistance to antimicrobials has become one of the greatest challenges for clinical microbiologists and healthcare practitioners worldwide. Acquisition of resistance genes has proven to be difficult to characterize and is largely uncontrollable in the environment. Here we sought to charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular microbiology and biotechnology 2014-01, Vol.24 (2), p.130-134
1. Verfasser: Jung, Carina M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial resistance to antimicrobials has become one of the greatest challenges for clinical microbiologists and healthcare practitioners worldwide. Acquisition of resistance genes has proven to be difficult to characterize and is largely uncontrollable in the environment. Here we sought to characterize conjugal horizontal gene transfer of plasmid-encoded fluoroquinolone resistance genes from two strains of Enterobacteriaceae, one clinical and one from a municipal wastewater treatment plant environment. Conjugation was dissimilar between the two strains. Escherichia coli strain LR09, containing a plasmid with the aac(6′)-Ib-cr fluoroquinolone resistance gene, did not conjugate with any of the 15 strains tested, while Enterobacter aerogenes strain YS11 conjugated with two strains of E. coli. The resultant transconjugants were also dissimilar in their stability and potential persistence. The observations presented herein exemplify the difficulties in understanding and controlling the spread of antimicrobial resistance. Thus, it may be prudent to address drug disposal and destruction, incorporating a life-cycle assessment plan ‘from cradle to grave', treating antimicrobials as chemical or environmental contaminants.
ISSN:2673-1665
1464-1801
2673-1673
1660-2412
DOI:10.1159/000362278