Tracking Chromosome Evolution in Southern African Gerbils Using Flow-Sorted Chromosome Paints

Desmodillus and Gerbilliscus (formerly Tatera) comprise a monophyletic group of gerbils (subfamily Gerbillinae) which last shared an ancestor approximately 8 million years ago; diploid chromosome number variation among the species ranges from 2n = 36 to 2n = 50. In an attempt to shed more light on c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytogenetic and genome research 2013-05, Vol.139 (4), p.267-275
Hauptverfasser: Knight, L.I., Ng, B.L., Cheng, W., Fu, B., Yang, F., Rambau, R.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Desmodillus and Gerbilliscus (formerly Tatera) comprise a monophyletic group of gerbils (subfamily Gerbillinae) which last shared an ancestor approximately 8 million years ago; diploid chromosome number variation among the species ranges from 2n = 36 to 2n = 50. In an attempt to shed more light on chromosome evolution and speciation in these rodents, we compared the karyotypes of 7 species, representing 3 genera, based on homology data revealed by chromosome painting with probes derived from flow-sorted chromosomes of the hairy footed gerbil, Gerbillurus paeba (2n = 36). The fluorescent in situ hybridization data revealed remarkable genome conservation: these species share a high proportion of conserved chromosomes, and differences are due to 10 Robertsonian (Rb) rearrangements (3 autapomorphies, 3 synapomorphies and 4 hemiplasies/homoplasies). Our data suggest that chromosome evolution in Desmodillus occurred at a rate of ∼1.25 rearrangements per million years (Myr), and that the rate among Gerbilliscus over a time period spanning 8 Myr is also ∼1.25 rearrangements/Myr. The recently diverged Gerbillurus (G. tytonis and G. paeba) share an identical karyotype, while Gerbilliscus kempi, G. afra and G. leucogaster differ by 6 Rb rearrangements (a rate of ∼1 rearrangement/Myr). Thus, our data suggests a very slow rate of chromosomal evolution in Southern African gerbils.
ISSN:1424-8581
1424-859X
DOI:10.1159/000350696