Matrix Metalloproteinase Inhibitor COL-3 Prevents the Development of Paclitaxel-Induced Hyperalgesia in Mice

Objective: To study the potential of chemically modified tetracycline-3 (COL-3), a potent matrix metalloproteinase (MMP) inhibitor, to protect against the development of paclitaxel-induced painful neuropathy and its immunomodulatory effects. Materials and Methods: The reaction latency to thermal sti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical principles and practice 2013-01, Vol.22 (1), p.35-41
Hauptverfasser: Parvathy, Subramanian S., Masocha, Willias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective: To study the potential of chemically modified tetracycline-3 (COL-3), a potent matrix metalloproteinase (MMP) inhibitor, to protect against the development of paclitaxel-induced painful neuropathy and its immunomodulatory effects. Materials and Methods: The reaction latency to thermal stimuli (hot plate test) of female BALB/c mice was recorded before and after treatment with paclitaxel (2 mg/kg i.p.), paclitaxel plus COL-3 (4, 20 or 40 mg/kg p.o.) or their vehicles for 5 consecutive days. Gene transcripts of CD11b (marker for microglia), 5 cytokines (IFN-γ, IL-1β, IL-6, IL-10 and TNF-α) and 3 chemokines (CCL2, CXCL10 and CX3CL1) were quantified by real-time PCR in the brains, spinal cords and spleens of mice sacrificed on day 7 after treatment. Results: Treatment with paclitaxel reduced the reaction latency time to thermal stimuli (thermal hyperalgesia) for 4 weeks, with maximum effect on days 7 and 10. The coadministration of paclitaxel with COL-3 40 mg/kg, but not lower doses, prevented the development of paclitaxel-induced thermal hyperalgesia. Treatment with paclitaxel alone or coadministration with COL-3 increased CD11b transcript levels in the brain but not in the spinal cord. Treatment with paclitaxel reduced IL-6 transcript levels in the spinal cord but did not alter the transcript levels of other cytokines or chemokines in the brain, spinal cord or spleen. The coadministration of COL-3 with paclitaxel significantly increased the transcript levels of IL-6 in the spleen and decreased CX3CL1 transcripts in the brain in comparison to treatment with paclitaxel alone. Conclusion: Our results indicate that the MMP inhibitor COL-3 protected against paclitaxel-induced thermal hyperalgesia and, thus, could be useful in the prevention of chemotherapy-induced painful neuropathy.
ISSN:1011-7571
1423-0151
DOI:10.1159/000341710