Electron Impact Mass Spectroscopic Studies on Mouse Retinal Fatty Acids
Aim: The primary objective of these investigations was to determine the fatty acid composition of the mouse retina as affected by diabetes. Additionally, in order to ascertain if there is any accumulation of lipids in the diabetic retina as occurs in many diabetic tissues, its total fatty acid conte...
Gespeichert in:
Veröffentlicht in: | Ophthalmic research 2009-07, Vol.42 (1), p.9-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aim: The primary objective of these investigations was to determine the fatty acid composition of the mouse retina as affected by diabetes. Additionally, in order to ascertain if there is any accumulation of lipids in the diabetic retina as occurs in many diabetic tissues, its total fatty acid content was also determined. Methods: Lipids in the retina of normal and diabetic mice were trans-methylated with methanolic HCl. The esters so prepared were analyzed for fatty acids by gas chromatography-mass spectrometry, qualitatively as well as quantitatively. Results: The major fatty acids in the retina were palmitic (PA), oleic (OA), stearic (SA), arachidonic (AA) and docosahexaenoic (DHA) acids. The content of all these fatty acids increased significantly in the diabetic retina, reflecting lipidosis. The major increases (∼3 times the normal) were found in PA, OA, SA and AA. The increase in DHA, however, was much less (∼1.4 times). The relative percentages of fatty acids were also affected. While the relative percentages of PA and OA increased in the diabetic retina, there were insignificant changes in the percentages of SA and AA. Interestingly, the relative percentage of DHA underwent a significant decrease, about 50% of the normal. Conclusions: The results show that there is excessive accumulation of lipids in the diabetic retina. This is consistent with the known increased mobilization of lipids from the adipose tissue and their accumulation in other tissues under diabetic conditions. On a percentage profile basis, while the relative percentage of most of the fatty acids increased, the DHA percentage significantly decreased. This could be explained by its dilution by the fatty acids coming from the fat depots which lack DHA. Physiologically, the excessive accumulation of fatty acids in the diabetic retina correlates with the lipofuscinosis and neural dysfunction associated with this disease. |
---|---|
ISSN: | 0030-3747 1423-0259 |
DOI: | 10.1159/000219679 |