Developing the Promise of Nutrigenomics through Complete Science and International Collaborations

Food is economically available to 4 billion of the world’s 6 billion people, a situation that resulted from dramatically improved methods for producing, storing, and distributing food on a mass scale during the last 100 years. Nevertheless, almost 2 billion people are malnourished through either ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of nutrition 2007-01, Vol.60, p.209-223
1. Verfasser: Kaput, Jim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Food is economically available to 4 billion of the world’s 6 billion people, a situation that resulted from dramatically improved methods for producing, storing, and distributing food on a mass scale during the last 100 years. Nevertheless, almost 2 billion people are malnourished through either over-consumption of fats and calories or lack of adequate calories and micronutrients. Malnourishment results in chronic diseases, immune dysfunction, and early death. Analyzing and understanding gene - nutrient interactions is therefore a necessary step for designing and producing foods for maintaining the health of populations and individuals. Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and conversely, how genes and their products metabolize these constituents into nutrients, antinutrients, and bioactive compounds. However, defining causal gene X nutrient interactions involved in maintaining optimum health are more challenging because of the (i) chemical complexity of food, (ii) genetic heterogeneity of humans, and (iii) the complexity of physiological responses to nutrient intakes in health and disease. Three significant developments will allow progress in nutrition and nutrigenomics: the development of high throughput omic (genomic, transcriptomic, proteomic, and metabolomic) technologies, improved experimental designs, and the development of research collaborations to study complex biological processes. The practical applications of nutrigenomics are the possibility of delivering the right micronutrients in the optimum amount to the food insecure and developing novel foods which are more nutritious, flavourful, storable, and health promoting than many of the products manufactured today.
ISSN:1660-0347
1662-2987
DOI:10.1159/000107197