THE CONGRUENCE ax1x2 ··· xk + bxk+1xk+2 ··· x2k ≡ c (mod p)
For prime p and integers a, b, c with p ∤ b, we obtain solutions of the congruence a x 1 x 2 ⋯ x k + b x k + 1 x k + 2 ⋯ x 2 k ≡ c ( mod p ) in a cube B with edge length B. For a cube in general position, we show that if p ∤ abc and k ≥ 5, then the congruence above has a solution in any cube with ed...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2017-02, Vol.145 (2), p.467-477 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For prime p and integers a, b, c with p ∤ b, we obtain solutions of the congruence
a
x
1
x
2
⋯
x
k
+
b
x
k
+
1
x
k
+
2
⋯
x
2
k
≡
c
(
mod
p
)
in a cube B with edge length B. For a cube in general position, we show that if p ∤ abc and k ≥ 5, then the congruence above has a solution in any cube with edge length
B
≫
p
1
4
+
1
2
(
k
+
1.95
)
+
ε
. Estimates are given for the case p|c as well, and improvements are given for small k. For cubes cornered at the origin, 1 ≤ xi ≤ B for all i, we obtain a solution provided only that
B
≫
p
3
2
k
+
O
(
k
log
log
p
)
. Under the assumption of GRH best possible estimates are given. Boxes with unequal edge lengths are also discussed. |
---|---|
ISSN: | 0002-9939 1088-6826 |