An efficient space-time adaptive wavelet Galerkin method for time-periodic parabolic partial differential equations

We introduce a multitree-based adaptive wavelet Galerkin algorithm for space-time discretized linear parabolic partial differential equations, focusing on time-periodic problems. It is shown that the method converges with the best possible rate in linear complexity and can be applied for a wide rang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2016-05, Vol.85 (299), p.1309-1333
Hauptverfasser: Kestler, Sebastian, Steih, Kristina, Urban, Karsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a multitree-based adaptive wavelet Galerkin algorithm for space-time discretized linear parabolic partial differential equations, focusing on time-periodic problems. It is shown that the method converges with the best possible rate in linear complexity and can be applied for a wide range of wavelet bases. We discuss the implementational challenges arising from the Petrov-Galerkin nature of the variational formulation and present numerical results for the heat and a convection-diffusion-reaction equation.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3009