An efficient space-time adaptive wavelet Galerkin method for time-periodic parabolic partial differential equations
We introduce a multitree-based adaptive wavelet Galerkin algorithm for space-time discretized linear parabolic partial differential equations, focusing on time-periodic problems. It is shown that the method converges with the best possible rate in linear complexity and can be applied for a wide rang...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2016-05, Vol.85 (299), p.1309-1333 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a multitree-based adaptive wavelet Galerkin algorithm for space-time discretized linear parabolic partial differential equations, focusing on time-periodic problems. It is shown that the method converges with the best possible rate in linear complexity and can be applied for a wide range of wavelet bases. We discuss the implementational challenges arising from the Petrov-Galerkin nature of the variational formulation and present numerical results for the heat and a convection-diffusion-reaction equation. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3009 |