The specific heat of β- brass
The specific heat of β-brass as measured by Sykes (1935) and by Moser (1936) shows an anomalous rise beginning at 160° C a sharp maximum- a λ-point-is reached and the specific heat drops abruptly to low values, the whole drop taking place with in 7°. Moser states that this drop is steep but continuo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1938-11, Vol.168 (935), p.546-566 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 566 |
---|---|
container_issue | 935 |
container_start_page | 546 |
container_title | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences |
container_volume | 168 |
creator | Eisenschitz, R. |
description | The specific heat of β-brass as measured by Sykes (1935) and by Moser (1936) shows an anomalous rise beginning at 160° C a sharp maximum- a λ-point-is reached and the specific heat drops abruptly to low values, the whole drop taking place with in 7°. Moser states that this drop is steep but continuous. Both authors obtain a slope of 0·03 cal./degree2g. approximately by interpolating between their experimental values. The thermal expansion coefficient goes parallel with the specific heat and has a maximum of similar shape (Steinwehr and Schulze 1934). This phenomenon is explained as the transition of the Cu and Zn atoms from an ordered arrangement to disorder. |
doi_str_mv | 10.1098/rspa.1938.0190 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_97256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>97256</jstor_id><sourcerecordid>97256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-fa522288cedf7fe6eade574a5c6d8166d755e01e4288fa96fbe1630bc5c193f23</originalsourceid><addsrcrecordid>eNp9T8lKAzEYDqJgrV49eJB5gRn_TCbbsRQ3KChuBy8hzSQ0dZkhmRbrY_kgPpMzHSmI6CU_4dsROsSQYZDiJMRaZ1gSkQGWsIUGOVCSSszkNhoACEgLRmAX7cU4BwBJBRmg47uZTWJtjXfeJDOrm6RyyedHmkyDjnEf7Tj9HO3B9x2i-7PTu_FFOrk6vxyPJqkhAjep0zTPcyGMLR13llldWsoLTQ0rBWas5JRawLZoOU5L5qYWt12mhpq2sMvJEGW9rwlVjME6VQf_osNKYVDdOtWtU9061a1rBaQXhGrVFquMt81KzatFeG2_f6uW_6lubq9HHXmJmfCSUAWCYOCFLHL17uu129qsf5hQPsaFVR31Z9Lv4KM-eB6bKmzGSZ5T1oJpD_rY2LcNqMOTYpxwqh5EoTBnhSTwqHLyBUv8kOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The specific heat of β- brass</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Eisenschitz, R.</creator><creatorcontrib>Eisenschitz, R.</creatorcontrib><description>The specific heat of β-brass as measured by Sykes (1935) and by Moser (1936) shows an anomalous rise beginning at 160° C a sharp maximum- a λ-point-is reached and the specific heat drops abruptly to low values, the whole drop taking place with in 7°. Moser states that this drop is steep but continuous. Both authors obtain a slope of 0·03 cal./degree2g. approximately by interpolating between their experimental values. The thermal expansion coefficient goes parallel with the specific heat and has a maximum of similar shape (Steinwehr and Schulze 1934). This phenomenon is explained as the transition of the Cu and Zn atoms from an ordered arrangement to disorder.</description><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1938.0190</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Analytic functions ; Approximation ; Atomic interactions ; Atoms ; Critical temperature ; Cubes ; Energy ; Mathematical functions ; Mathematical lattices ; Specific heat</subject><ispartof>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1938-11, Vol.168 (935), p.546-566</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-fa522288cedf7fe6eade574a5c6d8166d755e01e4288fa96fbe1630bc5c193f23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/97256$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/97256$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Eisenschitz, R.</creatorcontrib><title>The specific heat of β- brass</title><title>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>The specific heat of β-brass as measured by Sykes (1935) and by Moser (1936) shows an anomalous rise beginning at 160° C a sharp maximum- a λ-point-is reached and the specific heat drops abruptly to low values, the whole drop taking place with in 7°. Moser states that this drop is steep but continuous. Both authors obtain a slope of 0·03 cal./degree2g. approximately by interpolating between their experimental values. The thermal expansion coefficient goes parallel with the specific heat and has a maximum of similar shape (Steinwehr and Schulze 1934). This phenomenon is explained as the transition of the Cu and Zn atoms from an ordered arrangement to disorder.</description><subject>Analytic functions</subject><subject>Approximation</subject><subject>Atomic interactions</subject><subject>Atoms</subject><subject>Critical temperature</subject><subject>Cubes</subject><subject>Energy</subject><subject>Mathematical functions</subject><subject>Mathematical lattices</subject><subject>Specific heat</subject><issn>0080-4630</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1938</creationdate><recordtype>article</recordtype><recordid>eNp9T8lKAzEYDqJgrV49eJB5gRn_TCbbsRQ3KChuBy8hzSQ0dZkhmRbrY_kgPpMzHSmI6CU_4dsROsSQYZDiJMRaZ1gSkQGWsIUGOVCSSszkNhoACEgLRmAX7cU4BwBJBRmg47uZTWJtjXfeJDOrm6RyyedHmkyDjnEf7Tj9HO3B9x2i-7PTu_FFOrk6vxyPJqkhAjep0zTPcyGMLR13llldWsoLTQ0rBWas5JRawLZoOU5L5qYWt12mhpq2sMvJEGW9rwlVjME6VQf_osNKYVDdOtWtU9061a1rBaQXhGrVFquMt81KzatFeG2_f6uW_6lubq9HHXmJmfCSUAWCYOCFLHL17uu129qsf5hQPsaFVR31Z9Lv4KM-eB6bKmzGSZ5T1oJpD_rY2LcNqMOTYpxwqh5EoTBnhSTwqHLyBUv8kOY</recordid><startdate>19381125</startdate><enddate>19381125</enddate><creator>Eisenschitz, R.</creator><general>The Royal Society</general><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19381125</creationdate><title>The specific heat of β- brass</title><author>Eisenschitz, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-fa522288cedf7fe6eade574a5c6d8166d755e01e4288fa96fbe1630bc5c193f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1938</creationdate><topic>Analytic functions</topic><topic>Approximation</topic><topic>Atomic interactions</topic><topic>Atoms</topic><topic>Critical temperature</topic><topic>Cubes</topic><topic>Energy</topic><topic>Mathematical functions</topic><topic>Mathematical lattices</topic><topic>Specific heat</topic><toplevel>online_resources</toplevel><creatorcontrib>Eisenschitz, R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenschitz, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The specific heat of β- brass</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1938-11-25</date><risdate>1938</risdate><volume>168</volume><issue>935</issue><spage>546</spage><epage>566</epage><pages>546-566</pages><issn>0080-4630</issn><eissn>2053-9169</eissn><abstract>The specific heat of β-brass as measured by Sykes (1935) and by Moser (1936) shows an anomalous rise beginning at 160° C a sharp maximum- a λ-point-is reached and the specific heat drops abruptly to low values, the whole drop taking place with in 7°. Moser states that this drop is steep but continuous. Both authors obtain a slope of 0·03 cal./degree2g. approximately by interpolating between their experimental values. The thermal expansion coefficient goes parallel with the specific heat and has a maximum of similar shape (Steinwehr and Schulze 1934). This phenomenon is explained as the transition of the Cu and Zn atoms from an ordered arrangement to disorder.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1938.0190</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0080-4630 |
ispartof | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1938-11, Vol.168 (935), p.546-566 |
issn | 0080-4630 2053-9169 |
language | eng |
recordid | cdi_jstor_primary_97256 |
source | Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Analytic functions Approximation Atomic interactions Atoms Critical temperature Cubes Energy Mathematical functions Mathematical lattices Specific heat |
title | The specific heat of β- brass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20specific%20heat%20of%20%CE%B2-%20brass&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Eisenschitz,%20R.&rft.date=1938-11-25&rft.volume=168&rft.issue=935&rft.spage=546&rft.epage=566&rft.pages=546-566&rft.issn=0080-4630&rft.eissn=2053-9169&rft_id=info:doi/10.1098/rspa.1938.0190&rft_dat=%3Cjstor_cross%3E97256%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=97256&rfr_iscdi=true |