Gap and rigidity theorems of \lambda-hypersurfaces
We study \lambda -hypersurfaces that are critical points of a Gaussian weighted area functional \int _{\Sigma } e^{-\frac {\vert x\vert^2}{4}}dA for compact variations that preserve weighted volume. First, we prove various gap and rigidity theorems for complete \lambda -hypersurfaces in terms of the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2018-10, Vol.146 (10), p.4459-4471 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study \lambda -hypersurfaces that are critical points of a Gaussian weighted area functional \int _{\Sigma } e^{-\frac {\vert x\vert^2}{4}}dA for compact variations that preserve weighted volume. First, we prove various gap and rigidity theorems for complete \lambda -hypersurfaces in terms of the norm of the second fundamental form \vert A\vert. Second, we show that in one dimension, the only smooth complete and embedded \lambda -hypersurfaces in \mathbb{R}^2 with \lambda \geq 0 are lines and round circles. Moreover, we establish a Bernstein-type theorem for \lambda -hypersurfaces which states that smooth \lambda -hypersurfaces that are entire graphs with polynomial volume growth are hyperplanes. All the results can be viewed as generalizations of results for self-shrinkers. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14111 |