AN ABSOLUTELY STABLE hp-HDG METHOD FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH HIGH WAVE NUMBER

We present and analyze a hybridizable discontinuous Galerkin (HDG) method for the time-harmonic Maxwell equations. The divergence-free condition is enforced on the electric field, then a Lagrange multiplier is introduced, and the problem becomes the solution of a mixed curl-curl formulation of the M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2017-07, Vol.86 (306), p.1553-1577
Hauptverfasser: LU, PEIPEI, CHEN, HUANGXIN, QIU, WEIFENG
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present and analyze a hybridizable discontinuous Galerkin (HDG) method for the time-harmonic Maxwell equations. The divergence-free condition is enforced on the electric field, then a Lagrange multiplier is introduced, and the problem becomes the solution of a mixed curl-curl formulation of the Maxwell's problem. The method is shown to be an absolutely stable HDG method for the indefinite time-harmonic Maxwell equations with high wave number. By exploiting the duality argument, the dependence of convergence of the HDG method on the wave number κ, the mesh size h and the polynomial order p is obtained. Numerical results are given to verify the theoretical analysis.
ISSN:0025-5718
1088-6842