Introduction of Internal Coordinates into the Infinite-Component Majorana Equation
Given an infinite-component wave equation describing the global quantum numbers of a system one can introduce various internal dynamical coordinates such that ‘constituents’ will appear to move in an oscillator or in a Kepler potential, or, in principle, in other potentials. This is explicitly shown...
Gespeichert in:
Veröffentlicht in: | Proc. Roy. Soc. (London), Ser. A, v. 333, no. 1593, pp. 217-224 Ser. A, v. 333, no. 1593, pp. 217-224, 1973-05, Vol.333 (1593), p.217-224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an infinite-component wave equation describing the global quantum numbers of a system one can introduce various internal dynamical coordinates such that ‘constituents’ will appear to move in an oscillator or in a Kepler potential, or, in principle, in other potentials. This is explicitly shown for the Majorana equation. The space-like solutions of the Majorana equations correspond to the scattering state-solutions in terms of the constituent ‘particles’. Light-like solutions and a generalized second-order Majorana equation are also treated in a similar way. Relation to Dirac’s new wave equation without negative energy solutions is discussed. |
---|---|
ISSN: | 1364-5021 0080-4630 1471-2946 2053-9169 |
DOI: | 10.1098/rspa.1973.0058 |