Control of Microtubule Assembly-Disassembly by Calcium-Dependent Regulator Protein

The Ca2+-dependent regulator (CDR) protein of cyclic nucleotide phosphodiesterase is a low molecular weight, acidic, Ca2+-binding protein which has been implicated in a number of Ca2+-dependent enzymatic functions. Indirect immunofluorescence has revealed that CDR is specifically associated with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1978-08, Vol.75 (8), p.3771-3775
Hauptverfasser: Marcum, J. Michael, Dedman, John R., Brinkley, B. R., Means, Anthony R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Ca2+-dependent regulator (CDR) protein of cyclic nucleotide phosphodiesterase is a low molecular weight, acidic, Ca2+-binding protein which has been implicated in a number of Ca2+-dependent enzymatic functions. Indirect immunofluorescence has revealed that CDR is specifically associated with the chromosome-to-pole region of the mitotic apparatus during metaphase-anaphase in a pattern distinctly different from that of similar cultured cells stained with antitubulin. This characteristic localization in the mitotic half-spindle suggested a role for CDR in the control of microtubule assembly-disassembly during mitosis. Thus, CDR was examined for its effects on microtubule polymerization in vitro. It was determined that stoichiometric concentrations of CDR and a homologous Ca2+-binding protein, skeletal muscle troponin C, both inhibited and reversed microtubule assembly in a Ca2+-dependent manner. CDR-dependent inhibition of in vitro microtubule assembly occurred at physiological Ca2+concentrations (∼ 10 μ M) that, in the absence of CDR, caused only a slight reduction in polymerization. At Ca2+concentrations in the low physiological range (
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.75.8.3771