The Spiral Wave of our Galaxy near Inner Lindblad Resonance
The dispersion relationship for short-wavelength spiral density waves in our Galaxy has been refined to remove the divergences that occurred in wave number and in amplitude as inner Lindblad resonance is approached. The wave is found to be evanescent in an annular region near 4 kpc. By 3 kpc, the in...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1971-09, Vol.68 (9), p.2095-2098 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dispersion relationship for short-wavelength spiral density waves in our Galaxy has been refined to remove the divergences that occurred in wave number and in amplitude as inner Lindblad resonance is approached. The wave is found to be evanescent in an annular region near 4 kpc. By 3 kpc, the inward propagating trailing wave is completely absorbed. The outgoing leading wave is suppressed compared to the trailing one because it begins in the evanescent state. Throughout this region of inner Lindblad resonance, a smooth wave amplitude has been obtained, and it has a sharp peak correlating well with the observed density of ionized hydrogen. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.68.9.2095 |