The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
§1. We shall denote by uα(P) = uα (x1, x2, x3, t), α = 1, 2, 3, the components of velocity at the moment t at the point with rectangular cartesian coordinates x1, x2, x3. In considering the turbulence it is natural to assume the components of the velocity uα (P) at every point P = (x1, x2, x3, t) of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 1991-07, Vol.434 (1890), p.9-13 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | §1. We shall denote by uα(P) = uα (x1, x2, x3, t), α = 1, 2, 3, the components of velocity at the moment t at the point with rectangular cartesian coordinates x1, x2, x3. In considering the turbulence it is natural to assume the components of the velocity uα (P) at every point P = (x1, x2, x3, t) of the considered domain G of the four-dimensional space (x1, x2, x3, t) are random variables in the sense of the theory of probabilities (cf. for this approach to the problem Millionshtchikov (1939) Denoting by Ᾱ the mathematical expectation of the random variable A we suppose that ῡ2α and (duα /dxβ)2― are finite and bounded in every bounded subdomain of the domain G. |
---|---|
ISSN: | 0962-8444 2053-9177 |
DOI: | 10.1098/rspa.1991.0075 |