Differences of Bijections

When is a function from an abelian group to itself expressible as a difference of two bijections? Answering this question for finite cyclic groups solves a problem about juggling. A theorem of Marshall Hall settles the question for finite abelian groups, and a forgotten theorem of László Fuchs settl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2019-03, Vol.126 (3), p.199-216
Hauptverfasser: Ullman, Daniel H., Velleman, Daniel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When is a function from an abelian group to itself expressible as a difference of two bijections? Answering this question for finite cyclic groups solves a problem about juggling. A theorem of Marshall Hall settles the question for finite abelian groups, and a forgotten theorem of László Fuchs settles the question for infinite abelian groups. After explicating these theorems, we extend the problem by examining expressibility as a difference of injections or surjections. We also extend the question beyond the realm of group theory, where the expressibility of a function translates to questions about partial transversals in Latin squares.
ISSN:0002-9890
1930-0972
DOI:10.1080/00029890.2019.1546077