Minimum Distance Estimation for the Generalized Pareto Distribution

The generalized Pareto distribution (GPD) is widely used for extreme values over a threshold. Most existing methods for parameter estimation either perform unsatisfactorily when the shape parameter k is larger than 0.5, or they suffer from heavy computation as the sample size increases. In view of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 2017-10, Vol.59 (4), p.528-541
Hauptverfasser: Chen, Piao, Ye, Zhi-Sheng, Zhao, Xingqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generalized Pareto distribution (GPD) is widely used for extreme values over a threshold. Most existing methods for parameter estimation either perform unsatisfactorily when the shape parameter k is larger than 0.5, or they suffer from heavy computation as the sample size increases. In view of the fact that k > 0.5 is occasionally seen in numerous applications, including two illustrative examples used in this study, we remedy the deficiencies of existing methods by proposing two new estimators for the GPD parameters. The new estimators are inspired by the minimum distance estimation and the M-estimation in the linear regression. Through comprehensive simulation, the estimators are shown to perform well for all values of k under small and moderate sample sizes. They are comparable to the existing methods for k < 0.5 while perform much better for k > 0.5.
ISSN:0040-1706
1537-2723
DOI:10.1080/00401706.2016.1270857