Steady-State Engine Testing of γ-Alumina Catalysts Under Plasma Assist for NOx Control in Heavy-Duty Diesel Exhaust

A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr⁻¹ The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE transactions 2003-01, Vol.112, p.832-838
Hauptverfasser: Aardahl, C. L., Rappé, K. G., Park, P. W., Ragle, C. S., Boyer, C. L., Faulkner, S. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr⁻¹ The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasma treated gas was then passed over a catalyst bed held at constant temperature in the range of 573 to 773 K. Catalysts examined consisted of γ-alumina, indium-doped γ-alumina, and silver-doped γ- alumina. Road and rated load conditions resulted in engine out NOx levels of 250 - 600 ppm. The effects of hydrocarbon level, catalyst temperature, and space velocity are discussed where propene and in one case ultra-low sulfur diesel fuel (late cycle injection) were the reducing agents used for NOx reduction. Results showed NOx reduction in the range of 25 - 97% depending on engine operating conditions and management of the catalyst and slipstream conditions.
ISSN:0096-736X
2577-1531