Testing and Modeling of Metallic Multicorner Columns In Axial Crush

The front rail plays an important role in the performance of body-on-frame (BOF) vehicles in frontal crashes. New developments in materials and forming technology have led to the exploration of different configurations to improve crash performance. This paper presents the initial stages of an ongoin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE transactions 2005-01, Vol.114, p.89-101
Hauptverfasser: Gonzalez, Meagan, Chitoor, Karthik, Kim, Heung-Soo, Tyan, Tau, Chen, Guofei, Chen, Ming, Shi, Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The front rail plays an important role in the performance of body-on-frame (BOF) vehicles in frontal crashes. New developments in materials and forming technology have led to the exploration of different configurations to improve crash performance. This paper presents the initial stages of an ongoing study to investigate the effects of the cross section of steel columns on crash performance in automotive applications. Because accurate prediction of the performance of these rails can help reduce the amount of physical crash testing necessary, the focus of this paper is on appropriate testing and modeling procedures for different rail configurations. In the first part of this paper, the Finite Element Analysis (FEA) methodology is presented with respect to correlation with real world tests. The effects of various parameters are described, along with the optimum configuration for model correlation. In the latter part, the cross sections are compared in axial crush with respect to energy absorption and crush distance. Crosssectional area and material properties are held constant.
ISSN:0096-736X
2577-1531