Efficiency and Low Speed Behavior of the Floating Cup Pump
The floating cup principle is a new axial piston concept for hydrostatic machines. It features a high number of pistons, arranged in a double ring, back-to-back configuration. Furthermore the pistons are locked onto a central rotor and each piston has its own cuplike cylinder. These 'cups'...
Gespeichert in:
Veröffentlicht in: | SAE transactions 2004-01, Vol.113, p.366-376 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The floating cup principle is a new axial piston concept for hydrostatic machines. It features a high number of pistons, arranged in a double ring, back-to-back configuration. Furthermore the pistons are locked onto a central rotor and each piston has its own cuplike cylinder. These 'cups' are floating on and supported by a barrel plate. The pistons have a ball shaped crown, which is sealing directly on the cylinder without a piston ring. A first prototype of the new pump has been built and tested. For comparison a state-of-the-art slipper type pump and a bent axis pump (both constant displacement, 28 cc/rev) have been tested as well. The steady-state performance tests have proven the high efficiency of the floating cup principle. The low speed tests, during which the pumps are tested as a motor, have confirmed the low friction losses and high starting torque of the floating cup principle. Furthermore the high number of pistons strongly reduces the torque variations. This paper describes and analyzes the outcome of the measurements. |
---|---|
ISSN: | 0096-736X 2577-1531 |