Non-reciprocal wave propagation in modulated elastic metamaterials
Time-reversal symmetry for elastic wave propagation breaks down in a resonant mass-in-mass lattice whose inner-stiffness is weakly modulated in space and in time in a wave-like fashion. Specifically, one-way wave transmission, conversion and amplification as well as unidirectional wave blocking are...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2017-06, Vol.473 (2202), p.1-22 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-reversal symmetry for elastic wave propagation breaks down in a resonant mass-in-mass lattice whose inner-stiffness is weakly modulated in space and in time in a wave-like fashion. Specifically, one-way wave transmission, conversion and amplification as well as unidirectional wave blocking are demonstrated analytically through an asymptotic analysis based on coupled mode theory and numerically thanks to a series of simulations in harmonic and transient regimes. High-amplitude modulations are then explored in the homogenization limit where a non-standard effective mass operator is recovered and shown to take negative values over unusually large frequency bands. These modulated metamaterials, which exhibit either non-reciprocal behaviours or non-standard effective mass operators, offer promise for applications in the field of elastic wave control in general and in one-way conversion/amplification in particular. |
---|---|
ISSN: | 1364-5021 |