Machine Learning for Rocket Propulsion Health Monitoring

This paper describes the initial results of applying two machine-leaming-based unsupervised anomaly detection algorithms, Orca and GritBot, to data from two rocket propulsion testbeds. The first testbed uses historical data from the Space Shuttle Main Engine. The second testbed uses data from an exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE transactions 2005-01, Vol.114, p.1192-1197
1. Verfasser: Schwabacher, Mark
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the initial results of applying two machine-leaming-based unsupervised anomaly detection algorithms, Orca and GritBot, to data from two rocket propulsion testbeds. The first testbed uses historical data from the Space Shuttle Main Engine. The second testbed uses data from an experimental rocket engine test stand located at NASA Stennis Space Center. The paper describes four candidate anomalies detected by the two algorithms.
ISSN:0096-736X
2577-1531