Machine Learning for Rocket Propulsion Health Monitoring
This paper describes the initial results of applying two machine-leaming-based unsupervised anomaly detection algorithms, Orca and GritBot, to data from two rocket propulsion testbeds. The first testbed uses historical data from the Space Shuttle Main Engine. The second testbed uses data from an exp...
Gespeichert in:
Veröffentlicht in: | SAE transactions 2005-01, Vol.114, p.1192-1197 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the initial results of applying two machine-leaming-based unsupervised anomaly detection algorithms, Orca and GritBot, to data from two rocket propulsion testbeds. The first testbed uses historical data from the Space Shuttle Main Engine. The second testbed uses data from an experimental rocket engine test stand located at NASA Stennis Space Center. The paper describes four candidate anomalies detected by the two algorithms. |
---|---|
ISSN: | 0096-736X 2577-1531 |