Direct-Interface Fusible Heat Sink Performance Tests

A high fidelity, direct-interface, fusible heat sink for cooling astronauts during extravehicular activity was constructed and tested. The design includes special connectors that allow the coolant loop to be directly connected to the fusible material, in this case water. Aspects tested were start-up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE transactions 1994-01, Vol.103, p.924-928
Hauptverfasser: Lomax, W. Curtis, Kader, M. Beth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high fidelity, direct-interface, fusible heat sink for cooling astronauts during extravehicular activity was constructed and tested. The design includes special connectors that allow the coolant loop to be directly connected to the fusible material, in this case water. Aspects tested were start-up characteristics, cooling rate, and performance during simulated heat loads. A simplified math model was used to predict the effect of increasing the effective thermal conductivity on heat sink freezing rate. An experiment was designed to measure the effective thermal conductivity of a water/Aluminum foam system, and full gravity tests were conducted to compare the freezing rates of water and water/foam systems. This paper discusses the results of these efforts.
ISSN:0096-736X
2577-1531