THE cd-INDEX OF THE POSET OF INTERVALS AND Et-CONSTRUCTION

Given a graded poset P, let I(P) denote the associated poset of intervals and Et(P) the poset obtained from P by the Et-construction of Paffenholz and Ziegler [7]. We analyze how the ab-index behaves under those operations and prove that its change is expressed in terms of certain, quite explicit, r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2010-01, Vol.40 (2), p.527-541
1. Verfasser: JOJIĆ, DUŠKO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a graded poset P, let I(P) denote the associated poset of intervals and Et(P) the poset obtained from P by the Et-construction of Paffenholz and Ziegler [7]. We analyze how the ab-index behaves under those operations and prove that its change is expressed in terms of certain, quite explicit, recursively defined linear operators. If the poset P is Eulerian, the recursive relations for those linear operators are interpreted inside the coalgebra spanned by c and d. We use these relations to prove that the cd-index of the dual of the poset of intervals of the simplest Eulerian poset is the same as the cd-index of appropriate Tchebyshev poset defined by Hetyei in [5].
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-2010-40-2-527