PEMODIC ASPECTS OF SEQUENCES GENERATED BY TWO SPECIAL MAPPINGS

Let β = $\beta = \frac{q} {p}$ be a fixed rational number, where p and q are positive integers with 2 ≤ p < q and gcd(p, q) = 1. Consider two real-valued functions σ(x) = βx mod 1 and τ(x) = βx mod 1. For each positive integer n, let $s\left( n \right) = \sigma \left( n \right) = \frac{{s{{\left(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taiwanese journal of mathematics 2006-06, Vol.10 (4), p.829-836
Hauptverfasser: Chou, Wun-Seng, 周文賢, Shiue, Peter J.-S., 薛昭雄
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let β = $\beta = \frac{q} {p}$ be a fixed rational number, where p and q are positive integers with 2 ≤ p < q and gcd(p, q) = 1. Consider two real-valued functions σ(x) = βx mod 1 and τ(x) = βx mod 1. For each positive integer n, let $s\left( n \right) = \sigma \left( n \right) = \frac{{s{{\left( n \right)}_1}}} {p} + \cdots + \frac{{s{{\left( n \right)}_n}}} {{{p^n}}}andt\left( n \right) = {\tau ^n}\left( 1 \right) = \frac{{t{{\left( n \right)}_1}}} {p} + \cdots + \frac{{t{{\left( n \right)}_n}}} {{{p^n}}}$ be the p-ary representation. In this paper, we study the periods of both sequences ${S_k} = \left\{ {s{{\left( {n + k} \right)}_n}} \right\}\begin{array}{*{20}{c}} \infty \\ {n = 1} \\ \end{array} and{T_k} = \left\{ {t{{\left( {n + k} \right)}_n}} \right\}\begin{array}{*{20}{c}} \infty \\ {n = 1} \\ \end{array} $ for any non-negative integer k.
ISSN:1027-5487
2224-6851