CONVERGENCE OF GRADIENT METHOD WITH MOMENTUM FOR BACK-PROPAGATION NEURAL NETWORKS
In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. Corresponding convergence results are proved.
Gespeichert in:
Veröffentlicht in: | Journal of computational mathematics 2008-07, Vol.26 (4), p.613-623 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. Corresponding convergence results are proved. |
---|---|
ISSN: | 0254-9409 1991-7139 |