Adaptive Monte Carlo for Bayesian Variable Selection in Regression Models

This article describes methods for efficient posterior simulation for Bayesian variable selection in generalized linear models with many regressors but few observations. The algorithms use a proposal on model space that contains a tuneable parameter. An adaptive approach to choosing this tuning para...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 2013-09, Vol.22 (3), p.729-748
Hauptverfasser: Lamnisos, Demetris, Griffin, Jim E., Steel, Mark F.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article describes methods for efficient posterior simulation for Bayesian variable selection in generalized linear models with many regressors but few observations. The algorithms use a proposal on model space that contains a tuneable parameter. An adaptive approach to choosing this tuning parameter is described that allows automatic, efficient computation in these models. The method is applied to examples from normal linear and probit regression. Relevant code and datasets are posted online as supplementary materials.
ISSN:1061-8600
1537-2715
DOI:10.1080/10618600.2012.694756