Role of Sucrose-Phosphate Synthase in Sucrose Metabolism in Leaves

Sucrose is formed in the cytoplasm of leaf cells from triose phosphates exported from the chloroplast. Flux control is shared among key enzymes of the pathway, one of which is sucrose-phosphate synthase (SPS). Regulation of SPS by protein phosphorylation is important in vivo and may explain diurnal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1992-08, Vol.99 (4), p.1275-1278
Hauptverfasser: Huber, Steven C., Joan L. Huber
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sucrose is formed in the cytoplasm of leaf cells from triose phosphates exported from the chloroplast. Flux control is shared among key enzymes of the pathway, one of which is sucrose-phosphate synthase (SPS). Regulation of SPS by protein phosphorylation is important in vivo and may explain diurnal changes in SPS activity and carbon partitioning. The signal transduction pathway mediating the light activation of SPS in vivo appears to involve metabolites and novel "coarse" control of the protein phosphatase that dephosphorylates and activates SPS. Regulation of the phosphorylation of SPS may provide a general mechanism whereby sucrose formation is coordinated with the rate of photosynthesis and the rate of nitrate assimilation. There are apparent differences among species in the properties of SPS that may reflect different strategies for the control of carbon partitioning. The SPS gene has recently been cloned from maize; results of preliminary studies with transgenic tomato plants expressing high levels of maize SPS support the postulate that SPS activity can influence the partitioning of carbon between starch and sucrose.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.99.4.1275