Characteristics of five new photoautotrophic suspension cultures including two Amaranthus species and a cotton strain growing on ambient CO2 levels
Suspension cultures of cotton (Gossypium hirsutum), Amaranthus cruentus, A. powellii, Datura innoxia, and a Nicotiana tabacum-N. glutinosa fusion hybrid were adapted to grow photoautotrophically under continuous light. The cotton strain grew with an atmosphere of ambient CO2 (about 0.06 to 0.07% in...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1988-12, Vol.88 (4), p.1297-1302 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suspension cultures of cotton (Gossypium hirsutum), Amaranthus cruentus, A. powellii, Datura innoxia, and a Nicotiana tabacum-N. glutinosa fusion hybrid were adapted to grow photoautotrophically under continuous light. The cotton strain grew with an atmosphere of ambient CO2 (about 0.06 to 0.07% in the culture room) while the other strains required elevated CO2 levels (5%). Photoautotrophy was indicated by the requirement for CO2 and for light for growth. The strains grew with doubling times near 14 days and had from 50 to 600 micrograms of chlorophyll per gram of fresh weight. The cells grew in small to moderate sized clumps with cell sizes from 40 to 70 micrometers (diameter). Like most photoautotrophic cultures described so far the ribulose 1,5-bisphosphate carboxylase (RuBPcase) activity levels were well below those of mature leaves. The phosphoenolpyruvate carboxylase levels were not elevated in the C4 Amaranthus species. The cells showed high dark respiration rates and had lower net CO2 fixation under high O2 conditions. Dark CO2 fixation rates ranged from near 10 to 30% of that in light. Fluorescence emission spectra measurements show that the cell antenna pigments systems of the four strains examined are similar to that of chloroplasts of green plants. The cotton strain which was capable of growth under ambient CO2 conditions showed the unique properties of a high RuBPcase activation level in ambient CO2 and a stable ability to show net CO2 fixation in 21% O2 conditions. |
---|---|
ISSN: | 0032-0889 1532-2548 |