Selective Enhancement of Emotional, but not Motor, Learning in Monoamine Oxidase A-Deficient Mice

Mice deficient in monoamine oxidase A (MAOA), an enzyme that metabolizes monoamines such as norepinephrine and serotonin, have elevated norepinephrine and serotonin levels in the frontal cortex, hippocampus, and cerebellum, compared with normal wild-type mice. Since monoamines in these areas are cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1997-05, Vol.94 (11), p.5929-5933
Hauptverfasser: Kim, Jeansok J., Shih, Jean C., Chen, Kevin, Chen, Lu, Bao, Shaowen, Maren, Stephen, Anagnostaras, Stephan G., Fanselow, Michael S., De Maeyer, Edward, Seif, Isabelle, Thompson, Richard F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mice deficient in monoamine oxidase A (MAOA), an enzyme that metabolizes monoamines such as norepinephrine and serotonin, have elevated norepinephrine and serotonin levels in the frontal cortex, hippocampus, and cerebellum, compared with normal wild-type mice. Since monoamines in these areas are critically involved in a variety of behaviors, we examined learning and memory (using emotional and motor tasks) in MAOA mutant mice. The MAOA-deficient mice exhibited significantly enhanced classical fear conditioning (freezing to both tone and contextual stimuli) and step-down inhibitory avoidance learning. In contrast, eyeblink conditioning was normal in these mutant mice. The female MAOA-deficient mice also displayed normal species-typical maternal behaviors (nesting, nursing, and pup retrieval). These results suggest that chronic elevations of monoamines, due to a deletion of the gene encoding MAOA, lead to selective alterations in emotional behavior.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.94.11.5929