Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions

We propose a data-driven least-square cross-validation method to optimally select smoothing parameters for the nonparametric estimation of conditional cumulative distribution functions and conditional quantile functions. We allow for general multivariate covariates that can be continuous, categorica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 2013-01, Vol.31 (1), p.57-65
Hauptverfasser: Li, Qi, Lin, Juan, Racine, Jeffrey S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a data-driven least-square cross-validation method to optimally select smoothing parameters for the nonparametric estimation of conditional cumulative distribution functions and conditional quantile functions. We allow for general multivariate covariates that can be continuous, categorical, or a mix of either. We provide asymptotic analysis, examine finite-sample properties via Monte Carlo simulation, and consider an application involving testing for first-order stochastic dominance of children's health conditional on parental education and income. This article has supplementary materials online.
ISSN:0735-0015
1537-2707
DOI:10.1080/07350015.2012.738955