APPL1 potentiates insulin secretion in pancreatic β cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice
Insulin resistance and defective insulin secretion are the two major features of type 2 diabetes. The adapter protein APPL1 is an obligatory molecule in regulating peripheral insulin sensitivity, but its role in insulin secretion remains elusive. Here, we show that APPL1 expression in pancreatic β c...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-06, Vol.109 (23), p.8919-8924 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Insulin resistance and defective insulin secretion are the two major features of type 2 diabetes. The adapter protein APPL1 is an obligatory molecule in regulating peripheral insulin sensitivity, but its role in insulin secretion remains elusive. Here, we show that APPL1 expression in pancreatic β cells is markedly decreased in several mouse models of obesity and diabetes. APPL1 knockout mice exhibit glucose intolerance and impaired glucose-stimulated insulin secretion (GSIS), whereas transgenic expression of APPL1 prevents high-fat diet (HFD)-induced glucose intolerance partly by enhancing GSIS. In both pancreatic islets and rat β cells, APPL1 deficiency causes a marked reduction in expression of the exocytotic machinery SNARE proteins (syntaxin-1, synaptosomal-associated protein 25, and vesicle-associated membrane protein 2) and an obvious decrease in the number of exocytotic events. Such changes are accompanied by diminished insulin-stimulated Akt activation. Furthermore, the defective GSIS and reduced expression of SNARE proteins in APPL1 -deficient β cells can be rescued by adenovirusmediated expression of APPL1 or constitutively active Akt. These findings demonstrate that APPL1 couples insulin-stimulated Akt activation to GSIS by promoting the expression of the core exocytotic machinery involved in exocytosis and also suggest that reduced APPL1 expression in pancreatic islets may serve as a pathological link that couples insulin resistance to β-cell dysfunction in type 2 diabetes. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1202435109 |