Simultaneous Determination of Tuning and Calibration Parameters for Computer Experiments

Tuning and calibration are processes for improving the representativeness of a computer simulation code to a physical phenomenon. This article introduces a statistical methodology for simultaneously determining tuning and calibration parameters in settings where data are available from a computer co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 2009-11, Vol.51 (4), p.464-474
Hauptverfasser: Han, Gang, Santner, Thomas J., Rawlinson, Jeremy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tuning and calibration are processes for improving the representativeness of a computer simulation code to a physical phenomenon. This article introduces a statistical methodology for simultaneously determining tuning and calibration parameters in settings where data are available from a computer code and the associated physical experiment. Tuning parameters are set by minimizing a discrepancy measure while the distribution of the calibration parameters are determined based on a hierarchical Bayesian model. The proposed Bayesian model views the output as a realization of a Gaussian stochastic process with hyper-priors. Draws from the resulting posterior distribution are obtained by the Markov chain Monte Carlo simulation. Our methodology is compared with an alternative approach in examples and is illustrated in a biomechanical engineering application. Supplemental materials, including the software and a user manual, are available online and can be requested from the first author.
ISSN:0040-1706
1537-2723
DOI:10.1198/TECH.2009.08126