Aquilegia as a model system for the evolution and ecology of petals

The ranunculid genus Aquilegia holds extraordinary promise as a model system for investigating a wide range of questions relating to the evolution and ecology of petals. New genetic and genomic resources, including an extensive EST database, BAC libraries and physical maps, as well as virus-induced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2010-02, Vol.365 (1539), p.477-490
Hauptverfasser: Kramer, Elena M., Hodges, Scott A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ranunculid genus Aquilegia holds extraordinary promise as a model system for investigating a wide range of questions relating to the evolution and ecology of petals. New genetic and genomic resources, including an extensive EST database, BAC libraries and physical maps, as well as virus-induced gene silencing are facilitating this research on multiple fronts. At the developmental genetic level, Aquilegia has been important for elucidating the developmental programme for specifying petals and petaloid characteristics. Data suggest that duplication events among the petal and stamen identity genes have resulted in sub- and neofunctionalization. This expansion of gene function does not include the petaloidy of Aquilegia sepals, however, which does not depend on the same loci that control identity of the second whorl petals. Of special interest is the elaboration of the petal into a nectar spur, a major innovation for the genus. Intra- and interspecific variation in the shape and colour of petals, especially the spurs, has been shown to be adaptative for different pollinators. Thus, understanding the genetic basis of these traits will help us connect the ecological interactions driving speciation with the genetic changes responsible for remodelling morphology. Progress in this area has focused on the multiple, parallel transitions in flower colour and nectar spur length across the genus. For flower colour, upstream transcription factors appear to be primarily targets of natural selection. Thus research in Aquilegia spans the initial evolution of petals and petaloidy to the diversification of petal morphology to the ecological basis of petal form, thereby providing a comprehensive picture of the evolutionary biology of this critical angiosperm feature.
ISSN:0962-8436
1471-2970
DOI:10.1098/rstb.2009.0230