Optimizing rotary processes in synthetic molecular motors
We deal with the issue of quantifying and optimizing the rotation dynamics of synthetic molecular motors. For this purpose, the continuous four-stage rotation behavior of a typical light-activated molecular motor was measured in detail. All reaction constants were determined empirically. Next, we de...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-10, Vol.106 (40), p.16919-16924 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We deal with the issue of quantifying and optimizing the rotation dynamics of synthetic molecular motors. For this purpose, the continuous four-stage rotation behavior of a typical light-activated molecular motor was measured in detail. All reaction constants were determined empirically. Next, we developed a Markov model that describes the full motor dynamics mathematically. We derived expressions for a set of characteristic quantities, i.e., the average rate of quarter rotations or "velocity," V, the spread in the average number of quarter rotations, D, and the dimensionless Péclet number, Pe = V/D. Furthermore, we determined the rate of full, four-step rotations (Ωeff), from which we derived another dimensionless quantity, the "rotational excess," r.e. This quantity, defined as the relative difference between total forward (Ω₊) and backward (Ω₋) full rotations, is a good measure of the unidirectionality of the rotation process. Our model provides a pragmatic tool to optimize motor performance. We demonstrate this by calculating V, D, Pe, Ωeff, and r.e. for different rates of thermal versus photochemical energy input. We find that for a given light intensity, an optimal temperature range exists in which the motor exhibits excellent efficiency and unidirectional behavior, above or below which motor performance decreases. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0903710106 |