Atypical mechanism of conduction in potassium channels

Potassium channels can conduct passively K⁺ ions with rates of up to [almost equal to]10⁸ ions per second at physiological conditions, and they are selective to these species by a factor of 10⁴ over Na⁺ ions. Ion conduction has been proposed to involve transitions between 2 main states, with 2 or 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-09, Vol.106 (38), p.16074-16077
Hauptverfasser: Furini, Simone, Domene, Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16077
container_issue 38
container_start_page 16074
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Furini, Simone
Domene, Carmen
description Potassium channels can conduct passively K⁺ ions with rates of up to [almost equal to]10⁸ ions per second at physiological conditions, and they are selective to these species by a factor of 10⁴ over Na⁺ ions. Ion conduction has been proposed to involve transitions between 2 main states, with 2 or 3 K⁺ ions occupying the selectivity filter separated by an intervening water molecule. The largest free energy barrier of such a process was reported to be of the order of 2-3 kcal mol⁻¹. Here, we present an alternative mechanism for conduction of K⁺ in potassium channels where site vacancies are involved, and we propose that coexistence of several ion permeation mechanisms is energetically possible. Conduction can be described as a more anarchic phenomenon than previously characterized by the concerted translocations of K⁺-water-K⁺.
doi_str_mv 10.1073/pnas.0903226106
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_40485022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40485022</jstor_id><sourcerecordid>40485022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-59adc0b7491bfafca5010aadc9b87b232a90347ff60b7344d94faab4204bf7103</originalsourceid><addsrcrecordid>eNqFkc9rFDEcxYModl09e1IHD4KHab_5PbkIpbQqFDxozyGTTdosM8k4yYj9782yS1e99BTI9_Nevi8PodcYTjFIejZFk09BASVEYBBP0AqDwq1gCp6iFQCRbccIO0Evct4CgOIdPEcnWHXAq2KFxHm5n4I1QzM6e2diyGOTfGNT3Cy2hBSbEJspFZNzWMZmh0Q35JfomTdDdq8O5xrdXF3-uPjSXn_7_PXi_Lq1gkBpuTIbC71kCvfeeGs4YDD1TvWd7Aklpq7OpPeiQpSxjWLemJ4RYL2XGOgafdr7Tks_uo11scxm0NMcRjPf62SC_ncSw52-Tb80kZxwrKrBh4PBnH4uLhc9hmzdMJjo0pK1kKLDVPBHQYIJoaBoBd__B27TMsf6C5oAZvVNJSt0tofsnHKenX9YGYPeNad3zeljc1Xx9u-kR_5QVQU-HoCd8mgnNO00FiCZ9sswFPe7VLZ5hK3Imz2yzSXNDwwD1nGoUdfo3X7uTdLmdg5Z33yvASlg0dWUnP4Bbse_3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201419397</pqid></control><display><type>article</type><title>Atypical mechanism of conduction in potassium channels</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Furini, Simone ; Domene, Carmen</creator><creatorcontrib>Furini, Simone ; Domene, Carmen</creatorcontrib><description>Potassium channels can conduct passively K⁺ ions with rates of up to [almost equal to]10⁸ ions per second at physiological conditions, and they are selective to these species by a factor of 10⁴ over Na⁺ ions. Ion conduction has been proposed to involve transitions between 2 main states, with 2 or 3 K⁺ ions occupying the selectivity filter separated by an intervening water molecule. The largest free energy barrier of such a process was reported to be of the order of 2-3 kcal mol⁻¹. Here, we present an alternative mechanism for conduction of K⁺ in potassium channels where site vacancies are involved, and we propose that coexistence of several ion permeation mechanisms is energetically possible. Conduction can be described as a more anarchic phenomenon than previously characterized by the concerted translocations of K⁺-water-K⁺.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0903226106</identifier><identifier>PMID: 19805261</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Atoms ; Bacterial Proteins - chemistry ; Bacterial Proteins - physiology ; Binding Sites ; Biochemistry ; Biological Sciences ; Computer Simulation ; Conduction ; Crystallography, X-Ray ; Free energy ; Ion Channel Gating ; Ions ; Models, Molecular ; Molecular dynamics ; Molecules ; Physical Sciences ; Potassium ; Potassium - chemistry ; Potassium channels ; Potassium Channels - chemistry ; Potassium Channels - physiology ; Protein Conformation ; Protein Structure, Tertiary ; Sodium ; Thermodynamics ; Water ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-09, Vol.106 (38), p.16074-16077</ispartof><rights>Copyright National Academy of Sciences Sep 22, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-59adc0b7491bfafca5010aadc9b87b232a90347ff60b7344d94faab4204bf7103</citedby><cites>FETCH-LOGICAL-c620t-59adc0b7491bfafca5010aadc9b87b232a90347ff60b7344d94faab4204bf7103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40485022$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40485022$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19805261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furini, Simone</creatorcontrib><creatorcontrib>Domene, Carmen</creatorcontrib><title>Atypical mechanism of conduction in potassium channels</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Potassium channels can conduct passively K⁺ ions with rates of up to [almost equal to]10⁸ ions per second at physiological conditions, and they are selective to these species by a factor of 10⁴ over Na⁺ ions. Ion conduction has been proposed to involve transitions between 2 main states, with 2 or 3 K⁺ ions occupying the selectivity filter separated by an intervening water molecule. The largest free energy barrier of such a process was reported to be of the order of 2-3 kcal mol⁻¹. Here, we present an alternative mechanism for conduction of K⁺ in potassium channels where site vacancies are involved, and we propose that coexistence of several ion permeation mechanisms is energetically possible. Conduction can be described as a more anarchic phenomenon than previously characterized by the concerted translocations of K⁺-water-K⁺.</description><subject>Amino acids</subject><subject>Atoms</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - physiology</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Conduction</subject><subject>Crystallography, X-Ray</subject><subject>Free energy</subject><subject>Ion Channel Gating</subject><subject>Ions</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecules</subject><subject>Physical Sciences</subject><subject>Potassium</subject><subject>Potassium - chemistry</subject><subject>Potassium channels</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - physiology</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Sodium</subject><subject>Thermodynamics</subject><subject>Water</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEcxYModl09e1IHD4KHab_5PbkIpbQqFDxozyGTTdosM8k4yYj9782yS1e99BTI9_Nevi8PodcYTjFIejZFk09BASVEYBBP0AqDwq1gCp6iFQCRbccIO0Evct4CgOIdPEcnWHXAq2KFxHm5n4I1QzM6e2diyGOTfGNT3Cy2hBSbEJspFZNzWMZmh0Q35JfomTdDdq8O5xrdXF3-uPjSXn_7_PXi_Lq1gkBpuTIbC71kCvfeeGs4YDD1TvWd7Aklpq7OpPeiQpSxjWLemJ4RYL2XGOgafdr7Tks_uo11scxm0NMcRjPf62SC_ncSw52-Tb80kZxwrKrBh4PBnH4uLhc9hmzdMJjo0pK1kKLDVPBHQYIJoaBoBd__B27TMsf6C5oAZvVNJSt0tofsnHKenX9YGYPeNad3zeljc1Xx9u-kR_5QVQU-HoCd8mgnNO00FiCZ9sswFPe7VLZ5hK3Imz2yzSXNDwwD1nGoUdfo3X7uTdLmdg5Z33yvASlg0dWUnP4Bbse_3g</recordid><startdate>20090922</startdate><enddate>20090922</enddate><creator>Furini, Simone</creator><creator>Domene, Carmen</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090922</creationdate><title>Atypical mechanism of conduction in potassium channels</title><author>Furini, Simone ; Domene, Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-59adc0b7491bfafca5010aadc9b87b232a90347ff60b7344d94faab4204bf7103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino acids</topic><topic>Atoms</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - physiology</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Conduction</topic><topic>Crystallography, X-Ray</topic><topic>Free energy</topic><topic>Ion Channel Gating</topic><topic>Ions</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecules</topic><topic>Physical Sciences</topic><topic>Potassium</topic><topic>Potassium - chemistry</topic><topic>Potassium channels</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - physiology</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Sodium</topic><topic>Thermodynamics</topic><topic>Water</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furini, Simone</creatorcontrib><creatorcontrib>Domene, Carmen</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furini, Simone</au><au>Domene, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atypical mechanism of conduction in potassium channels</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-09-22</date><risdate>2009</risdate><volume>106</volume><issue>38</issue><spage>16074</spage><epage>16077</epage><pages>16074-16077</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Potassium channels can conduct passively K⁺ ions with rates of up to [almost equal to]10⁸ ions per second at physiological conditions, and they are selective to these species by a factor of 10⁴ over Na⁺ ions. Ion conduction has been proposed to involve transitions between 2 main states, with 2 or 3 K⁺ ions occupying the selectivity filter separated by an intervening water molecule. The largest free energy barrier of such a process was reported to be of the order of 2-3 kcal mol⁻¹. Here, we present an alternative mechanism for conduction of K⁺ in potassium channels where site vacancies are involved, and we propose that coexistence of several ion permeation mechanisms is energetically possible. Conduction can be described as a more anarchic phenomenon than previously characterized by the concerted translocations of K⁺-water-K⁺.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19805261</pmid><doi>10.1073/pnas.0903226106</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-09, Vol.106 (38), p.16074-16077
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_40485022
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
Atoms
Bacterial Proteins - chemistry
Bacterial Proteins - physiology
Binding Sites
Biochemistry
Biological Sciences
Computer Simulation
Conduction
Crystallography, X-Ray
Free energy
Ion Channel Gating
Ions
Models, Molecular
Molecular dynamics
Molecules
Physical Sciences
Potassium
Potassium - chemistry
Potassium channels
Potassium Channels - chemistry
Potassium Channels - physiology
Protein Conformation
Protein Structure, Tertiary
Sodium
Thermodynamics
Water
Water - chemistry
title Atypical mechanism of conduction in potassium channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atypical%20mechanism%20of%20conduction%20in%20potassium%20channels&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Furini,%20Simone&rft.date=2009-09-22&rft.volume=106&rft.issue=38&rft.spage=16074&rft.epage=16077&rft.pages=16074-16077&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0903226106&rft_dat=%3Cjstor_fao_a%3E40485022%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201419397&rft_id=info:pmid/19805261&rft_jstor_id=40485022&rfr_iscdi=true